Experimental and Numerical Investigation of Hypervelocity Carbon Dioxide Flow over Blunt Bodies
نویسندگان
چکیده
This paper represents ongoing efforts to study high-enthalpy carbon dioxide flows in anticipation of the upcoming Mars Science Laboratory and future missions. The work is motivated by observed anomalies between experimental and numerical studies in hypervelocity impulse facilities. In this study, experiments are conducted in the hypervelocity expansion tube that, by virtue of its flowacceleration process, exhibitsminimal freestreamdissociation in comparisonwith reflected shock tunnels, simplifying comparisonwith simulations. Shock shapes of the laboratory aeroshell at angles of attack of 0, 11, and 16deg and spherical geometries are in very good agreementwith simulations incorporating detailed thermochemical modeling. Laboratory shock shapes at a 0 deg of attack are also in good agreement with data from the LENS X expansion tunnel facility, confirming results are facility-independent for the same type of flow acceleration. The shock standoff distance is sensitive to the thermochemical state and is used as an experimental measurable for comparison with simulations and two different theoretical models. For low-density small-scale experiments, it is seen thatmodels baseduponassumptions of large binary scaling values donotmatch the experimental andnumerical results. In an effort to address surface chemistry issues arising in high-enthalpy groundtest experiments, spherical stagnation point and aeroshell heat transfer distributions are also compared with the simulation. Heat transfer distributions over the aeroshell at the three angles of attack are in reasonable agreement with simulations, and the data fall within the noncatalytic and supercatalytic solutions.
منابع مشابه
Approximate Viscous Shock-Layer Analysis of Axisymmetric Bodies in Perfect Gas Hypersonic Flow
In this paper, an approximate axisymmetric method is developed which can reliably calculate fully viscous hypersonic flow over blunt-nosed bodies. In this method, a Maslen’s second-order pressure expression is used instead of the normal momentum equation. The combination of Maslen’s second-order pressure expression and viscous shock layer equations is developed to accurately and efficiently com...
متن کاملShock layer instability near the Newtonian limit of hypervelocity flows
The curved bow shock in hypersonic flow over a blunt body generates a shear layer with smoothly distributed vorticity. The vorticity magnitude is approximately proportional to the density ratio across the shock, which may be very large in hypervelocity flow, making the shear layer unstable. A computational study of the instability reveals that two distinct nonlinear growth mechanisms occur in s...
متن کاملLaminar and Turbulent Aero Heating Predictions over Blunt Body in Hypersonic Flow
In the present work, an engineering method is developed to predict laminar and turbulent heating-rate solutions for blunt reentry spacecraft at hypersonic conditions. The calculation of aerodynamic heating around blunt bodies requires alternative solution of inviscid flow field around the hypersonic bodies. In this paper, the procedure is of an inverse nature, that is, a shock wave is assumed a...
متن کاملExperimental Investigation and Modeling of Carbon Dioxide Adsorption from Model Flue gas
In this work, the adsorption of carbon dioxide from model flue gas on different adsorbents has been investigated. Using simplified modeling, parameters such as the total mass transfer coefficient and the effective diffusivity have been determined. Experiments were carried out in two sections: firstly, adsorption of pure carbon dioxide on different adsorbents was measured at pressures ranging fr...
متن کاملExperimental Investigation of Reactive Absorption of Ammonia and Carbon Dioxide by Carbonated Ammonia Solution
In this work, reactive absorption of gases in aqueous electrolyte solutions has been investigated resulting in the development of a procedure in order to calculate the concentrations of ionic and molecular species in the liquid phase. Two duplicate experiments were conducted to investigate simultaneous reactive absorption of ammonia and carbon dioxide in partially carbonated ammonia solutio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010